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Conformal map modeling of the pinning transition in Laplacian growth
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In Laplacian growth processes pinning may be expected due to a nonlinear response of a material during
dielectric breakdown, or due to stick-slip boundary conditions in two-fluid flow in a porous medium, while
thermal noise will lead to depinning. Using a method recently proposed by Hastings and Levitov, the size
Rmax;Ec

2a of the pinned pattern is shown to scale with the critical fieldEc ~electric field for dielectric
breakdown, pressure gradient for fluid flow!. These pinned patterns have a lower effective fractal dimensiondf

than diffusion-limited aggregation due to the enhancement of growth at the hot tips of the developing pattern.
At finite temperature, thermal noise leads to depinning and growth of patterns with a shape and dimensionality
dependent on bothEc and the thermal noise. Using multifractal analysis, scaling expressions are established for
this dependency.

DOI: 10.1103/PhysRevE.65.036141 PACS number~s!: 02.50.2r, 61.43.Hv, 77.22.Jp, 45.70.Qj
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I. INTRODUCTION

The importance of diffusion-limited aggregation~DLA !
as a paradigm for nonequilibrium growth and pattern form
tion has constantly increased in the twenty years since
discovery by Witten and Sander@1#. The reason is multifold.
First, it is a self-organized growth process leading natura
to fractal structures. Second, it has been identified a
stripped down model for several physical processes suc
dielectric breakdown@2#, electrochemical deposition@3,4#,
and two-fluid Laplacian flow@5#. Although we have gained a
great deal of understanding of DLA during this period, ma
important questions remain open. One such issue is the
fluence on the type of pattern formed of a critical thresh
Ec in the electric field for dielectric breakdown, or equiv
lently of a critical pressure gradient for flow to occur as t
fluid-fluid phase boundary wanders inside a porous medi
This question is important for both practical reasons in
creasing our understanding of real dielectric breakdown
two-fluid flow in porous media, and theoretically becau
still little is known about how the self-similar multifracta
structure of DLA emerges.

As far as dielectric breakdown is concerned, the ba
argument putting it in the same universality class as D
involves the assumption that the probability of dielect
breakdown is proportional to the electric field~or, in the
generalized models@2#, to the local electric field to some
powerh, i.e., Eh). Though this dielectric breakdown mod
is very useful from a theoretical viewpoint in discussing fra
tal growth processes, it is unlikely to represent the physic
sparking in a real material. The simplest model that mi
describe this phenomenon would be to introduce a mate
dependent critical electric fieldEc for breakdown to occur.

Similar constraints can be identified in the context of tw
fluid immiscible flow in in a porous medium. A Saffmann
Taylor instability is known to exist@6# and DLA has been
identified as the appropriate universality class for the fra
structure formed by this type of Laplacian flow@5#. Such a
fluid-fluid phase boundary wanders in a highly disorde
medium in which the less viscous fluid is nonwetting~in two
1063-651X/2002/65~3!/036141~8!/$20.00 65 0361
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dimensions, think of a Hele-Shaw cell filled with porous m
terial whose pores are saturated with a viscous oil tha
being displaced by a nonwetting low viscosity water!. Thus,
one would expect the pressure gradient at the interface ab
to have a critical value for flowu“pu.Ec;s/k, wheres is
the effective surface tension of the water in the pores ank
is the permeability of the porous medium.

These two physical situations in which a similar mater
dependent critical parameterEc naturally occurs then raise
the question as to how this criticality influences the grow
and form of the pattern. In this paper we show that suc
threshold for growth has remarkable consequences: its in
ence is crucial to both growth—the patterns ultimately
become pinned and to form—the rich branched stucture
DLA is replaced by a much lower-dimensional shape cons
ing of a few surviving branches that are the last to be pinn

Since in this paper we are addressing Laplacian flows,
will make use of a powerful tool recently proposed by Ha
ings and Levitov@7,8#, namely, iterated conformal mapping
It has been already shown that DLA in two dimensions c
be grown by iterating stochastic conformal maps, and
will show that a simple variant of this method allows us
study Laplacian growth in the presence of a critical field.

Therefore, in Sec. II we introduce the model we wish
study using iterated conformal maps. In Sec. III, we descr
how physical properties of the growth pattern are extrac
from the developing conformal map. In Sec. IV, we study t
scaling properties exhibited by such patterns when pinn
and estimate the dependence of the pinning exponents oEc
as well as the fractal dimension of the pinned clusters.
Sec. V, we study the scaling behavior of the first Laure
coefficient of the mapping~which is proportional to the clus
ter radius! near the pinning. In Sec. VI, we examine th
influence of thermal noise on depinning, and we conclu
with a discussion of the results in Sec. VII.

II. CONFORMAL MODELING OF LAPLACIAN GROWTH
WITH CRITICAL GRADIENTS

A simple physical model for studying the time develo
ment of pinning in Laplacian growth is therefore to assu
©2002 The American Physical Society41-1
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that the pressure gradient“p(s) ~we shall use the languag
of two-fluid flow in most of this paper though naturally w
might equally have used the electric fieldE(s) in the lan-
guage of dielectric breakdown! at a points on the developing
interface should be greater than a certain critical valueEc , in
order for motion of the interface to occur at a points on the
interface. Thus, the normal velocityv(s) of the interface will
be given by

v~s!5H 2k“p if u“pu.Ec ,

0 if u“pu,Ec .
~1!

If the flows are incompressible then the pressure field out
the developing pattern will still obey Laplace’s equati
¹2p50, and consequently the extremely difficult problem
calculating the pressure field in the presence of the cons
pressure boundary conditions on the freely evolving interf
can be handled by using conformal mapping techniques

The basic idea is to follow the evolution of the conform
mappingF (n)(w) that maps the exterior of the unit circle i
a mathematicalw plane onto the complement of the clust
of n particles in the physicalz plane.F (n)(w) is unique by
the Riemann mapping theorem, given that it satisfies
boundary condition

F (n)~w!;F1
(n)w as w→`, ~2!

whereF1
(n) is the first Laurent coefficient in the expansion

the mapping, a real positive coefficient, fixing the argum
of @F (n)(w)#8 to be zero at infinity.

As the complex pressure in the mathematical plane ob
C (n)(w)5p1 ic5 ln w ~we assume the pressure on the fr
boundaryuwu51 of the flow to obeyp50), the complex
pressureC (n)(z) in the physical plane is given by

C (n)~z!5 ln@F (n)#21~z!, ~3!

where@F (n)#21(z) is the inverse mapping and automatica
satisfiesp(s)50 on the free boundary of the flow. Assumin
z→` in Eq. ~2!, it is easy to verify that Eq.~3! implies

C (n)~z!; ln z when z→`, ~4!

as it should be in two dimensions.
The equation of motion forF (n)(w) is determined recur-

sively ~see Fig. 1!. The choice of the initial mapF (0)(w) is
rather flexible, and in this paper we select~arbitrarily! an
initial conditionF (0)(w)5w since we expect the asymptot
cluster to be independent of this choice. Assuming t
F (n21)(w) is given, then the cluster ofn ‘‘particles’’ is cre-
ated by adding a new ‘‘particle’’ of constant shape and lin
scaleAl0 to the cluster of (n21) ‘‘particles’’ at a position
that is chosen randomly according to the harmonic meas
provided the pressure gradient obeys Eq.~1!, u“pu.Ec .
How is this constraint achieved?

We denote points on the boundary of the cluster byz(s),
wheres is an arc-length parametrization. Using Eq.~3!, one
has u“pu5udC (n)/dsu51/udF (n)/dwu, and therefore the
probability to add a particle on an infinitesimal arcds cen-
tered at the pointz(s) on the cluster boundary is
03614
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P~s,ds!;udC~s!/dsuds. ~5!

The preimages ofz(s) andds in the w plane beingeiu and
du, respectively, it follows thatds5u@F (n21)#8(eiu)udu, and
we therefore conclude that

P~s,ds!5udC~s!/dsuuF8udu5du. ~6!

Thus, the harmonic measure on the real cluster translates
uniform measure on the unit circle in the mathemati
plane, and all we need for fulfilling the constraint is to gro
only at values ofu that obey

1/u@F (n21)#8~eiu!u.Ec . ~7!

Let us define now a new functionfln ,un
(w). This func-

tion maps the unit circle to the unit circle with a bump
linear scale Aln around the point eiun. For w→`,
fln ,un

(w);w ~with positive real proportionality coeffi-

cient!. Usingfln ,un
(w) the recursion relation forF (n)(w) is

given by ~see Fig. 1!

F (n)~w!5F (n21)
„fln ,un

~w!…. ~8!

so the right-hand side of Eq.~8! is determined completely by
F (n21)(w), and the Eq.~8! induces the recursive dynamic
of F (n)(w).

Finally, to close the set of equationsln must be chosen to
obey

ln5
l0

uF (n21)8~eiun!u2
~9!

in order to ensure that a bump of sizeAl0 is added in the
physicalz plane.

The recursive dynamics can be represented as iteration
the elementary bump mapfln ,un

(w),

F (n)~w!5fl1 ,u1
+fl2 ,u2

+•••+fln ,un
~v!. ~10!

FIG. 1. Diagramatic representation of the mappingsF andf.
1-2



an
t
ry
s
-

u
e

ed

p
o

ca
pi

is

it

p
ts
is
d

e

ll
p

th

ent

hat

nt

of

ice

n of

at-
ise
ul-

ct
r,
en
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Although this composition appears at first sight to be a st
dard iteration of stochastic maps, this is not so because
order of iterations is inverted—the last point of the trajecto
is the inner argument in this iteration. As a result the tran
tion from F (n)(w) to F (n11)(w) is not achieved by one ad
ditional iteration, but by composing then former maps Eq.
~10! starting from a different seed that is no longerv but
fln11 ,un11

(w).
There is a certain freedom in choosing the nonuniq

function fl,u that conformally maps the unit circle to th
unit circle with a bump. An optimal choice forfln ,un

(w)
that ensures that the bump is localized has been propos
Ref. @7# and is given by

fl,0~w!5w12aH ~11l!

2w
~11w!F11w1wS 11

1

w2

2
2

w

12l

11l D 1/2G21J a

, ~11!

fl,u~w!5eiufl,0~e2 iuw!, ~12!

where the parametera is confined to the range 0,a,1. As
a decreases the bump becomes flatter, with the identity m
obtained fora50. As a increases towards unity the bum
becomes elongated normally to the unit circle, with a limit
becoming a line~‘‘strike’’ in the language of Ref.@7#! when
a51. Following the analysis in Ref.@9#, we have useda
50.66 througout this paper, as we believe the large s
asymptotic properties will not be affected by the microsco
shape of the added bump.

III. ALGORITHM AND EXTRACTION OF CLUSTER
PROPERTIES

The algorithm simulating the growth of the cluster
based on Ref.@9#. Then-‘‘particle’’ cluster is encoded by the
series of pairs$(u i ,l i)% i 51

n . Having the firstn21 pairs, the
nth pair is found as follows: chooseun from a uniform dis-
tribution in @0,2p#, independent of previous history. If
obeys the constraint given by Eq.~7! accept this value ofun ,
otherwise repeat until the constraint is obeyed. If no acce
able value ofun is found after a given number of attemp
m(n) ~see also Sec. IV where the attempt algorithm is d
cussed in greater detail! the cluster is assumed to be pinne
Otherwise, we computeln from Eq. ~9!, where the deriva-
tive of the iterated functionF (n21) involves fln21 ,un21

8 ,

fln22 ,un22
8 , fln23 ,un23

8 , etc, computed, respectively, at th

points eiun,fln21 ,un21
(eiun),fln22 ,un22

@fln21 ,un21
(eiun)#,

etc. Note that the evaluation of bothf8 and f after the
addition of one particle involvesO(n) operations since the
seed changes at everyn, and this translates inton2m(n) time
complexity for the growth of ann-particle cluster.

Once the mappingF (n)(w) has been found, essentially a
questions of physical interest can be addressed. For exam
the local pressure gradient is given by the derivative of
mapping u“pu51/uF (n21)8(eiun)u, while the radius of the
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developing pattern can be extracted from the first Laur
coefficientF1

(n) of the mapping.
To see how this occurs we start with the observation t

since the functionsF (n)(w) andfl,u(w) are required to be
linear in w at infinity, they can be expanded in a Laure
series in which the highest power isw,

F (n)~w!5F1
(n)w1F0

(n)1F21
(n)w211F22

(n)w221•••,
~13!

fl,u~w!5 f 1w1 f 01 f 21w211 f 22w221•••, ~14!

where

f 15~11l!a,

f 05
2aleiu

~11l!12a
,

f 215
2al e2iu

~11l!22a S 11
2a21

2
l D ,

f 225
2ale3iu

~11l!32a S 112~a21!l1
2a223a11

3
l2D .

Thus the recursion equations for the Laurent coefficients
F (n)(w) can be obtained by substituting the series ofF and
f into the recursion formula~8!. Specifically,

F1
(n)5F1

(n21)f 1
(n)5)

i 51

n

~11l i !
a, ~15!

and therefore given the set of$l i% we can calculateF1
(n) .

Furthermore, from the one-fourth theorem@9#, which
states that the interior of the curve$z:z5F (n)(eiu)% is con-
tained in a circle of radius 4F1

(n) , follows that F1
(n) is a

typical length scale of the cluster and thus a natural cho
for the radius of the cluster isR.F1

(n) . As any typical radius
of the cluster should scale liken1/DAl0, whereD is the di-
mension of the cluster, we can thus expectF1

(n) to scale as

F1
(n);n1/DAl0. ~16!

We note in passing that this scaling law was used in Ref.@9#
as a very convenient way to measure the fractal dimensio
the growing cluster.

IV. THE PINNING TRANSITION IN LAPLACIAN
GROWTH

The existence of a critical pressure gradientEc for flow or
dieletric breakdown automatically means that all growth p
terns will ultimately become pinned in the absence of no
because the pressure gradients diminish in a power law m
tifractal fashion as the cluster grows@10–12#. For example,
for a two-dimensional compact flow we would expe
u“p(s)u;1/R, whereR is the radius of the growing cluste
while for a fractal shape multifractal theory shows that ev
the stron-
1-3
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gest gradients scale asu“p(s)u<1/RD`, which also tends
asymptotically to zero.

The actual manner in which the cluster will be pinned c
be extracted by studying pinning as a function ofEc . We
note, however, that the definition of a ‘‘pinned’’ cluster is a
important question that needs to be dealt with in our al
rithm. In principal, one should test each possible growth
that means makingm(N);N attempts to continue growth o
the N-particle cluster before accepting the cluster as pinn
In practice, this means a drastic slowing down of the wh
algorithm, which becomes aO(N3) and only small clusters
can be grown in a reasonable amount of time. On the o
hand, one may argue that if the hottest tips~which are visited
every ;ND` /D steps! do not grow, then the whole cluste
will be pinned. Assuming this as definition of ‘‘pinned,’’ th
whole algorithm can be reduced toO(N21D` /D) allowing
reasonably large clusters to be grown. In practice, we
that while at givenEc the ‘‘pinned’’ clusters are~not surpris-
ingly! smaller in the second case, the scaling behavior
we find is unaffected. This can be seen in our results for b
the scaling of the pinned cluster radiusRc with critical pres-
sure gradient for flowEc and the scaling of the pinned clus
ter sizeNc with critical pressure gradient for flowEc ~see
Fig. 2!.

Summarizing the results of our simulations, we note t
the pinned cluster radius and size both scale withEc . The
maximal radius of the pattern scales as

Rc;Ec
2a ~17!

with 1.6,a,1.8, while the maximal size of the patter
scales as

Nc;Ec
2b ~18!

with b'2.25.
In consequence, the pinned pattern retains mass-ra

scaling@see Fig. 2~c!# asNc scales withRc as

Nc;Rc
df ~19!

with 1.25,df5b/a,1.4, although the resulting patter
no longer possesses local self-similarity, and thus is no
fractal.

How can we understand these results? From multifra
scaling@11,12# we know that the interface of the cluster co
sists of sets ofNa;(R/Al0) f (a) sites with pressure gradien
u“pu;(R/Al0)2a. Thus, we would expect that the weake
gradients, normally deep in the fjords, would be pinned fi
with the hot tips surviving longest, and indeed this is wha
observed in simulations, as shown in Fig. 3. The two clus
correspond to DLA withEc50, and to a cluster grown with
a pinning gradientEc50.002, and one can see that de
inside the cluster the DLA grows further than the pinn
cluster, while the hot tips of the pinned cluster are mo
likely to grow than in DLA. The same effect can be seen
the development of the first Laurent coefficientF1

(n) before
pinning occurs~see Fig. 4!.
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In order to understand these results theoretically let
begin with a very simplistic argument that will help to set t
stage for a better estimate. As we mentioned, one wo
expect the hot tips to have the maximal growing probabi
and thus to be pinned last. These maximal growth probab
ties in DLA scale asD`5D21 ~where D'1.713 is the
fractal dimension for DLA, and we have assumed the Sh
Turkovitch identity @13# to be valid!. Therefore, as a firs
estimate we assume the clusters are pinned whenPmax

;(Al0/Rmax)
D`;Ec . Before pinning we shall assume th

FIG. 2. Scaling of the pinned cluster:~a! radiusRc with critical
pressure gradient for flowEc ; ~b! size Nc with critical pressure
gradient for flow Ec ; ~c! size Nc with radius Rc . Triangles,
m(N);N attempts before pinning; squares,m(N);ND` /D. The
dashed lines are linear fits to the data.
1-4
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FIG. 3. Two clusters grown with the same s
of random numbers.~i! A DLA cluster; ~ii ! a clus-
ter whereEc50.002. Note both the pinned re
gions deep in the cluster and hot tips that gro
preferentially.
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the cluster scales like DLA and thereforeNmax;Rmax
D . If

both these assumptions were correct, we would then find

a51/D`'1.4, ~20!

b5D/D`'2.4, ~21!

df5D'1.7. ~22!

But we know that this argument is not quite correct b
cause the growing prepinned cluster is not in the same
versality class as DLA, and probably it is not even a frac
object. As can be seen in Fig. 4, the first Laurent coeffici
shows that there is a breakdown in scaling after an ini
period when DLA scalingF1

(n);n1/D applies.
A better estimate therefore is to start with the quest

about when will the influence ofEc make itself felt and
cause crossover to a new growth mode? Based on the
that essentially all the measure in a harmonic fractal~the
integral over the electric field in the case of dielectric bre
down, or the pressure gradient in the case of two-fluid flo!
lies on a one-dimensional interfaceD151, one would expect
03614
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crossover at scalesl whenPin f ormation;(Al0/ l );Ec . Thus,
instead of a DLA-like structure on all scales, a description
the cluster more likely to be correct is that it remains frac
on scalesr ! l but becomes linear on scalesr @ l . If this
description is valid, then

b5a1~D21!. ~23!

Retaining our estimate ofb ~which was based on the fac
that pinning can be expected when the hot tips can no lon
grow!, we find

a5D/D`2~D21!'1.7, ~24!

b5D/D`'2.4, ~25!

df5b/a'1.3, ~26!

in good agreement with simulations.
t

ot
FIG. 4. Time development of the first Lauren
coefficientF1

(n) for two clusters.~i! A DLA clus-
ter; ~ii ! a cluster whereEc50.002. The solid line
shows the theoretical DLA behaviorF1

(n);n(1/D).
Note how for the same value ofn the pinned
cluster typically has a larger radius due to the h
tips that grow preferentially.
1-5
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FIG. 5. Data collapse ofF1
(n)(Ec)/n

1/D plotted
againstEcn

m. The asymptotic formf (x)→x is
shown for purposes of comparison. The valuem
leading to the best data collapse ism.0.55.
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V. SCALING IN THE PREPINNING REGIME

It is possible to go further theoretically and derive a sc
ing form for the first Laurent coefficientF1

(n) of the mapping
before pinning occurs. This scaling form is based on
following observation. It appears that the evolving pattern
asymptotically forming the maximally branched structu
subject to the constraint that only sites with a pressure
dient u“pu.Ec can grow. Using for the moment the lan
guage of electrostatics, the integral of the electric fi
around the pattern*0

LE(s)ds ~which is the total flux! is equal
to the charge on the object and is conserved during grow
The maximally branched object~just before pinning occurs!
would thus consist ofNgrowth;1/Ec hot tips each with a
growth probability Pgrowth;Ec . Such an asymptotic flow
pattern would scale as (R/Al0);EcN, and this leads to the
following scaling form for the first Laurent coefficient:

F1
(n)~Ec!5n1/DAl0f ~Ecn

m!. ~27!

Since the initial behavior is DLA-like and therefore

f ~x!→ f ~0! as x→0, ~28!

while the final growth is linearF1
(n)(Ec);Ecn and therefore

f ~x!→x as x→` ~29!

it then follows thatm5(D21)/D'0.416.
To check this prediction, in Fig. 5 we have plotte

F1
(n)(Ec)/n

1/D againstEcn
m, and as can be seen all the da

collapse with the scaling functionf (x) having the form
given by Eqs.~28! and ~29!.

VI. THE INFLUENCE OF NOISE ON DEPINNING

So far we have assumed that there exists a critical va
Ec of the electric field or pressure gradient for growth
occur and therefore all patterns are ultimately pinned. In
presence of thermal noise, as will be the case in most ph
cal situations, depinning can occur and thus the pinned
03614
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terns will represent theT50 limit of a finite temperature
phase diagram, while DLA will be theT→` limit. To gen-
erate nonzero temperature patterns, we can use a variatio
a Monte Carlo algorithm in which the probability for growt
at a sites is P(s)5min$1,exp@b(u“pu2Ec)#%, whereb51/T.
In the conformal mapping approach, this translates to
variation of Eq. ~7!, i.e., the probability of growth at the
randomly chosen pointu on the unit circle will be given by

P~u!5min$1,exp@b~1/u@F (n21)#8~eiu!u2Ec!#%. ~30!

The types of clusters corresponding to this type of grow
can be seen in Fig. 6.

Numerical simulations with fixed criticalEc and increas-
ing temperature~decreasingb) reveal that the fractal dimen
sion of the resulting clusters appear to depend continuo
on bEc . That is scaling behaviorF1

(n);n1/D(bEc) is observed
for all b andEc , as illustrated in Fig. 7.

We would like to emphasize two points. First, as must
the case for high temperature, DLA patterns appear
thereforeD→DDLA when bEc!1. Second, the fractal di
mension reduces continuously, apparently reachingD51 for
a finite value ofbEc'3.5, thus implying a transition to pur
one-dimensional growth at finite, nonzero temperature. T
last result is tentative as is the suggestion that the fra
dimension depends only on the productbEc , and further
work with different parameters is required before a cle
conclusion can be drawn.

VII. SUMMARY AND DISCUSSION

In this paper, we have shown numerical evidence tha
threshold for growth dramatically influences both the grow
pattern and the form of the cluster. Scaling relations for
pinned patterns have been proposed based on numerica
dence, and the scaling exponents of the pinned cluster h
been derived as well as the form of the mass-radius sca
in the prepinning regime.

We expect that simple extentions of this model may
important in other domains of physics. For example, in
1-6
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FIG. 6. Cluster growth in the presence o
noise. All haveEc50.01. The values of the effec
tive inverse temperatureb51/T are, respectively,
~i! b550; ~ii ! b5150; ~iii ! b51000. Note the
transition from a branched DLA structure asT
→` to a few rivulets or arcs asT→0.
ite
a

ow
to

he
th
p
o

ion
n

rin
ur
n-

d

-
on
ear

or
sily
uld
lity

lts
r of
oise
ely
a

e of
ely
te

hese

en-
the
lly

n-
g

nt
ure

um
this
M.

on
presence of applied shear viscoelastic behavior is exhib
by thin films, an initial elastic behavior being followed, at
well-defined yield stress, by shear melting and ductile fl
@14,15#. This observed stick-slip behavior is not only due
the ordered state of the thin film of fluid but also to t
presence of velocity weakening boundary conditions at
mesoscale. These significantly modify the lubricating pro
erties of thin films creating localized mesoscopic regions
stick and slip in the sheared film@16#, and how the flow
patterns change due to such stick-slip boundary condit
can be studied using an approach similar to the one prese
here.

Also, we note that the patterns created by a wande
contact line may also lie in a related universality class. D
ing wetting of a surface by a droplet, any volatility or co

FIG. 7. Mass-radius scaling exponentdf as a function ofbEc at
Ec50.01 ~semilog plot, respectively, linear plot in the inset!. Nu-
merical evidence suggests there may be a transition to
dimensional structures at finite values ofbEc'3.5. A fit to the data
~solid line! suggests thatdf depends linearly onbEc .
03614
d

e
-
f

s
ted

g
-

tamination in the wetting fluid will lead to temperature an
surface-tension gradients resulting in additional forces~the
Marangoni effect!. The alteration in dynamics may be dra
matic: for example, if surfactant solutions are spread
moist surfaces large surface-tension gradients will app
leading to a fingering of the contact line@17#, and the spread-
ing is an order of magnitude faster than surface tension
gravity dominated wetting. Since such gradients are ea
accomodated in the present method, in principle, one co
obtain in this manner evidence on whether the universa
class is the same or not.

Finally, we have to emphasize the fact that the resu
presented in this paper raise and leave open a numbe
questions about the influence of material properties and n
on Laplacian growth patterns and suggest that one is unlik
to achieve a good understanding of DLA in isolation from
parameter space incorporating these parameters. Som
these questions would include: Is the fractal dimension tru
a function of onlybEc? Is there a phase transition at a fini
value ofbEc to one-dimensional~but finitely branched clus-
ters! as suggested above? We expect the answers to t
question to involve a detailed study of the effect ofEc andb
on the multifractal distribution of the cluster.

There is another important point that we have not m
tioned in this paper but could have a profound effect on
growth pattern. That is whether the cluster is grown seria
~as we have done here or in pure DLA! or in parallel~as the
algorithm for Laplacian flows would suggest from its co
tinuum descrition!. Very recently iterated conformal mappin
methods have been used to study this question@18#, and it
appears that Laplacian growth and DLA may lie in differe
universality classes. This is an important question for fut
study.
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