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Conformal map modeling of the pinning transition in Laplacian growth
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In Laplacian growth processes pinning may be expected due to a nonlinear response of a material during
dielectric breakdown, or due to stick-slip boundary conditions in two-fluid flow in a porous medium, while
thermal noise will lead to depinning. Using a method recently proposed by Hastings and Levitov, the size
Rmax~Ec @ of the pinned pattern is shown to scale with the critical fiEld (electric field for dielectric
breakdown, pressure gradient for fluid flowhese pinned patterns have a lower effective fractal dimergion
than diffusion-limited aggregation due to the enhancement of growth at the hot tips of the developing pattern.
At finite temperature, thermal noise leads to depinning and growth of patterns with a shape and dimensionality
dependent on both. and the thermal noise. Using multifractal analysis, scaling expressions are established for
this dependency.
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[. INTRODUCTION dimensions, think of a Hele-Shaw cell filled with porous ma-
terial whose pores are saturated with a viscous oil that is
The importance of diffusion-limited aggregatigbLA)  being displaced by a nonwetting low viscosity watdihus,
as a paradigm for nonequilibrium growth and pattern forma-2n€ would expect the pressure gradient at the interface above
tion has constantly increased in the twenty years since it Nave a critical value for floyV p|>E.~ o/ x, whereo is

discovery by Witten and Sandgt]. The reason is multifold. e effective surface tension of the water in the poresand
First, it is a self-organized growth process leading naturall))S the permeabmty_of th? porous .medu'Jm. o .
These two physical situations in which a similar material

to fractal structures. Second, it has been identified as - :
stripped down model for several physical processes such %ﬁ‘pe”dem critical parame_tErC _natu_rally occurs then raise
dielectric breakdowr{2], electrochemical depositiof8,4], the question as to how this crltlcallty influences the growth
and two-fluid Laplacian flov}5]. Although we have gained a and form of the pattern. In this paper we show that_su_ch a
great deal of understanding of DLA during this period, manythreshold for_grovvth has remarkable consequences: its influ-
important questions remain open. One such issue is the i nce 1S cr.umal to both grovvth—th(_a patterns ultimately all
fluence on the type of pattern formed of a critical threshold?¢0Me pinned and to form—the .”Ch b_ranched stucture of
E. in the electric field for dielectric breakdown, or equiva- .DLA is replaced .by a much lower-dimensional shape consist-
lently of a critical pressure gradient for flow to occur as the'"d qf a f?W surviving branches that are the last t'o be pinned.
fluid-fluid phase boundary wanders inside a porous medium, . Since in this paper we are addressing Laplacian flows, we
This question is important for both practical reasons in in—WIII make use of a poweriul toql recently proposed by Hast-
creasing our understanding of real dielectric breakdown an{fgs and Levito\(7,8], namely, |terated_ conforr_nal mapping.
two-fluid flow in porous media, and theoretically because.! has been a"feady. shown that_DLA in two dimensions can
still little is known about how the self-similar multifractal b? grown by |ter§1t|ng stoc'hastlc cqnformal maps, and we
will show that a simple variant of this method allows us to

structure of DLA emerges. . . o .
As far as dielectric breakdown is concerned, the basicStlJOly Lap'ac'f%” growth in the presence of a critical f'?'d-
' Therefore, in Sec. Il we introduce the model we wish to

argument putting it in the same universality class as DLAt q ing iterated f | In Sec. Il d ib
involves the assumption that the probability of dielectric Study using iterated contormal maps. in Sec. i, we describe

breakdown is proportional to the electric fieldr, in the how physical prqperties of the growth pattern are extracted
generalized model§2], to the local electric field to some from_ the develo_plng co_nf_ormal map. In Sec. IV, we stud_y the
power 7, i.e., E”). Though this dielectric breakdown model scaling properties exhibited by such patterns when pinned,
is very useful from a theoretical viewpoint in discussing frac-and estimate the dependence of the pinning exponerni on

tal growth processes, it is unlikely to represent the physics o0 s well as the fractal d|m§n3|on of Fhe plnned'clusters. In

sparking in a real material. The simplest model that migh ec. V we study the _scalln_g b_ehawor Qf the first Laurent

describe this phenomenon would be to introduce a materiaﬁoeff":'_ent of the mappmg/vmch is proportional to the_ clus-

dependent critical electric fielH, for breakdown to occur. ter radiug near the pinning. In Se_c. .Vl’ we examine the
Similar constraints can be identified in the context of tWO_ln_quencc_a of thermal noise on d_epmmng, and we conclude

fluid immiscible flow in in a porous medium. A Saffmann- with a discussion of the results in Sec. VII.

Taylor instability is known to exis{6] and DLA has been ;' ~o\rFoRMAL MODELING OF LAPLACIAN GROWTH

identified as the appropriate universality class for the fractal WITH CRITICAL GRADIENTS

structure formed by this type of Laplacian fld®]. Such a

fluid-fluid phase boundary wanders in a highly disordered A simple physical model for studying the time develop-

medium in which the less viscous fluid is nonwettifilgtwo  ment of pinning in Laplacian growth is therefore to assume
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that the pressure gradieNtp(s) (we shall use the language ©—plane Z- plane
of two-fluid flow in most of this paper though naturally we
might equally have used the electric fidiqs) in the lan-
guage of dielectric breakdowat a points on the developing
interface should be greater than a certain critical v&lygin
order for motion of the interface to occur at a poénin the
interface. Thus, the normal velocitys) of the interface will
be given by

o

1
(Dn
V=1, if |Vp|<E.. @ @y

If the flows are incompressible then the pressure field outside
the developing pattern will still obey Laplace’s equation
V2p=0, and consequently the extremely difficult problem of
calculating the pressure field in the presence of the constant
pressure boundary conditions on the freely evolving interface FIG. 1. Diagramatic representation of the mappidgand ¢.
can be handled by using conformal mapping techniques.

The basic idea is to follow the evolution of the conformal P(s,ds)~|d¥(s)/ds|ds. (5)
mapping® (" (w) that maps the exterior of the unit circle in
a mathematical plane onto the complement of the cluster The preimages of(s) andds in the w plane beinge'? and
of n particles in the physicat plane.®(™(w) is unique by  dg, respectively, it follows thatis=|[ &M~ 1]’ (e')|d6, and
the Riemann mapping theorem, given that it satisfies thgye therefore conclude that
boundary condition

o
—kVp if |Vp|>E, :

P(s,ds)=|dW¥(s)/ds||D’|do=d8@. 6
OO(w)~F{Pw  as w, @ (s,ds)=[dW¥(s)/ds||D’| 6)

h ) is the f Hicient in th _ fThus, the harmonic measure on the real cluster translates to a
whereF; ™ is the first Laurent coefficient in the expansion of nitorm measure on the unit circle in the mathematical

the m(a;;:)ping,, a real positive coefficient, fixing the argumentyane and all we need for fulfilling the constraint is to grow
of [®'™(w)]’ to be zero at mﬂmty. _ only at values ofg that obey
As the complex pressure in the mathematical plane obeys

¥(M(w)=p+iy=Inw (we assume the pressure on the free 1/|[(D(n—1)],(eio)|>Ec_ @

boundary|w|=1 of the flow to obeyp=0), the complex

pressure¥ "(2) in the physical plane is given by Let us define now a new functiog, 4 (w). This func-
v(z)=In[dM] L(2) (3) tion maps the unit circle to the unit circle with a bump of

linear scale A, around the pointe'®. For w—oo,
where[ ®(M]71(2) is the inverse mapping and automatically &\, .0, (W)~W (with positive real proportionality coeffi-
satisfiesp(s) =0 on the free boundary of the flow. Assuming cient. Using ¢, , (w) the recursion relation fob™(w) is
z—» in Eq. (2), it is easy to verify that Eq(3) implies given by (see Fnig.nl

¥2)~Inz when 2 @ O (W)= D(g, , (W)). ®

as it should be in two dimensions.

The equation of motion fo (M (w) is determined recur- SO the right-hand side of E¢g) is determined completely by
sively (see Fig. 1 The choice of the initial ma@@(w) is @ *(w), and the Eq(8) induces the recursive dynamics
rather flexible, and in this paper we seldetbitrarily) an  of @M (w).
initial condition ®(®)(w) =w since we expect the asymptotic ~ Finally, to close the set of equationg must be chosen to
cluster to be independent of this choice. Assuming thapbey
d(~(w) is given, then the cluster of “particles” is cre-

ated by adding a new “particle” of constant shape and linear o
scale /A to the cluster of (—1) “particles” at a position Anzlq)(nfl),(ei e ©)

that is chosen randomly according to the harmonic measure,
provided the pressure gradient obeys Et), |Vp|>E..
How is this constraint achieved?

We denote points on the boundary of the clusteiz{s),
wheres is an arc-length parametrization. Using E8), one
has |Vp|=|d¥™/ds|=1/d®dM/dw|, and therefore the
probability to add a particle on an infinitesimal ais cen-
tered at the poing(s) on the cluster boundary is OO(W)= 0,2 8n,.0,° b, ()

in order to ensure that a bump of sizl, is added in the
physicalz plane.

The recursive dynamics can be represented as iterations of
the elementary bump mag, ,en(W),

(10

036141-2



CONFORMAL MAP MODELING OF THE PINNING . .. PHYSICAL REVIEW E65 036141

Although this composition appears at first sight to be a standeveloping pattern can be extracted from the first Laurent

dard iteration of stochastic maps, this is not so because theoefficientF{" of the mapping.

order of iterations is inverted—the last point of the trajectory To see how this occurs we start with the observation that

is the inner argument in this iteration. As a result the transisince the functiong((w) and ¢, ,(w) are required to be

tion from &M (w) to ®"*Y(w) is not achieved by one ad- linear in w at infinity, they can be expanded in a Laurent

ditional iteration, but by composing theformer maps Eq. series in which the highest powerg

(10) starting from a different seed that is no longerbut " O P,

ér, .0, ,(W). M (w)=FPw+FM+FMw 1+ FWw 24 ...
There is a certain freedom in choosing the nonunique

function ¢, , that conformally maps the unit circle to the

unit circle with a bump. An optimal choice fo’xn,an(W)

that ensures that the bump is localized has been proposedwhere
Ref.[7] and is given by

(13

¢)\’9(W)=flw+f0+f_1W_1+f_2W_2+--~, (14)

f1=(1+N)3,
ENICERN) 1 |
by o(W)=w o (1+w)| 1+w+w 1+v? 2ane'’
0:—|
(1+n)'2
21—\ 1/2 a |
TWI1EN -1, (11) 2a\ e?'? ( 2a—1 )
f*l: A y
i : (1+1)%2 2
by o(W)=€'"¢, o(e”' W), (12
. . 2aned’ 2a’—3a+1
where the parameteris confined to the rangeQa<1. As f2=—3( 1+2(a—1)\+ —)\2).
a decreases the bump becomes flatter, with the identity map (1+n)*° 3

obtained fora=0. As a increases towards unity the bump
becomes elongated normally to the unit circle, with a limit of
becoming a ling“strike” in the language of Ref[7]) when
a=1. Following the analysis in Ref9], we have used
=0.66 througout this paper, as we believe the large scale n

asymptotic properties will not be affected by the microscopic FM=p(DEW=T] (1+\)?, (15)
shape of the added bump. =1

Thus the recursion equations for the Laurent coefficients of
®M(w) can be obtained by substituting the seriesboind
¢ into the recursion formulé8). Specifically,

and therefore given the set f;} we can calculaté&{" .
Furthermore, from the one-fourth theoref], which
states that the interior of the curye:z=®™(e'%} is con-
The algorithm simulating the growth of the cluster is tained in a circle of radius B{", follows thatF{" is a
based on Ref.9]. Then-“particle” cluster is encoded by the typical length scale of the cluster and thus a natural choice
series of pair§(6; ,\;)}/_, . Having the firsln—1 pairs, the for the radius of the cluster R= F{V. As any typical radius
nth pair is found as follows: choos#, from a uniform dis-  of the cluster should scale like*® ]\, whereD is the di-
tribution in [0,27], independent of previous history. If it mension of the cluster, we can thus expéﬁﬁ) to scale as
obeys the constraint given by E) accept this value of,,,
otherwise repeat until the constraint is obeyed. If no accept- F{M~n'P X, (16)

able value ofé, is found after a given number of attempts , . . . .
m(n) (see also Sec. IV where the attempt algorithm is dis- /& Note in passing that this scaling law was used in FBgf.

cussed in greater detathe cluster is assumed to be pinned. &S & Very convenient way to measure the fractal dimension of

Otherwise, we computa,, from Eq. (9), where the deriva- e 9rowing cluster.
tive of the iterated functiord™~*) involves ¢,

Ill. ALGORITHM AND EXTRACTION OF CLUSTER
PROPERTIES

, , .’1'0”’1, IV. THE PINNING TRANSITION IN LAPLACIAN
¢)‘n72'0n72' ¢)‘n—3'0n—3' etc, computed, respectively, at the GROWTH

H i6 i6 i6
points €y 0, (€ by ;0. LDy, 0, (€M, The existence of a critical pressure gradiggfor flow or

etc. Note that the evaluation of bo#" and ¢ after the  gigletric breakdown automatically means that all growth pat-
addition of one particle involve®(n) operations since the terns will ultimately become pinned in the absence of noise
seed changes at evemyand this translates inte’m(n) time  pecause the pressure gradients diminish in a power law mul-
complexity for the growth of am-particle cluster. tifractal fashion as the cluster groW$0—14. For example,

Once the mapping ™ (w) has been found, essentially all for a two-dimensional compact flow we would expect
questions of physical interest can be addressed. For exampqq;p(s)|~1/R, whereR is the radius of the growing cluster,
the local pressure gradient is given by the derivative of thgyhjle for a fractal shape multifractal theory shows that even
mapping |Vp|=1/®"~1"(e' )|, while the radius of the the stron-
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gest gradients scale a¥ p(s)|<1/RP=, which also tends
asymptotically to zero.

The actual manner in which the cluster will be pinned can
be extracted by studying pinning as a functionEyf. We
note, however, that the definition of a “pinned” cluster is an
important question that needs to be dealt with in our algo-#
rithm. In principal, one should test each possible growth sited
that means making(N) ~ N attempts to continue growth of
the N-particle cluster before accepting the cluster as pinned.
In practice, this means a drastic slowing down of the whole
algorithm, which becomes @(N®) and only small clusters
can be grown in a reasonable amount of time. On the othe|
hand, one may argue that if the hottest tiphich are visited
every ~NP='P steps do not grow, then the whole cluster
will be pinned. Assuming this as definition of “pinned,” the

whole algorithm can be reduced @(N?"P='P) allowing
reasonably large clusters to be grown. In practice, we find
that while at giverk, the “pinned” clusters arénot surpris-
ingly) smaller in the second case, the scaling behavior tha:
we find is unaffected. This can be seen in our results for both ,
the scaling of the pinned cluster radiRs with critical pres- =
sure gradient for flowE,; and the scaling of the pinned clus-
ter sizeN. with critical pressure gradient for flo, (see
Fig. 2.

Summarizing the results of our simulations, we note that
the pinned cluster radius and size both scale WEth The
maximal radius of the pattern scales as

Re~E; (17

with 1.6<«<<1.8, while the maximal size of the pattern
scales as

N.~E;” (18)

o
_ [+
with B~2.25.
In consequence, the pinned pattern retains mass-radiu
scaling[see Fig. 2c)] asN, scales withR, as
ds
N.~R, (19
with 1.25<d;=pB/a<1.4, although the resulting pattern

no longer possesses local self-similarity, and thus is not a
fractal.
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FIG. 2. Scaling of the pinned clustda) radiusR. with critical

How can we understand these results? From multifractafressure gradient for flok, ; (b) size N, with critical pressure

scaling[11,12 we know that the interface of the cluster con-
sists of sets o~ (R/\\) (¥ sites with pressure gradients
|Vp|~(R/\/\o) ¢ Thus, we would expect that the weakest
gradients, normally deep in the fjords, would be pinned first,

gradient for flow E.; (c) size N. with radius R;. Triangles,
m(N)~N attempts before pinning; squares(N)~NP=/P. The
dashed lines are linear fits to the data.

In order to understand these results theoretically let us
with the hot tips surviving longest, and indeed this is what isbegin with a very simplistic argument that will help to set the
observed in simulations, as shown in Fig. 3. The two clusterstage for a better estimate. As we mentioned, one would
correspond to DLA withE.=0, and to a cluster grown with expect the hot tips to have the maximal growing probability
a pinning gradiente.=0.002, and one can see that deepand thus to be pinned last. These maximal growth probabili-

inside the cluster the DLA grows further than the pinnedties in DLA scale asD.,=D—1 (where D~1.713 is the

cluster, while the hot tips of the pinned cluster are morefractal dimension for DLA, and we have assumed the Sher-

likely to grow than in DLA. The same effect can be seen inTurkovitch identity [13] to be valig. Therefore, as a first

the development of the first Laurent coefficigf{" before
pinning occurgsee Fig. 4.
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400

200

100 FIG. 3. Two clusters grown with the same set
of random numbergi) A DLA cluster; (i) a clus-
ter whereE,=0.002. Note both the pinned re-
gions deep in the cluster and hot tips that grow

preferentially.
-100

-200

-300 =
-400 -300 -200 -100 0 100 200 300 400

the cluster scales like DLA and therefoMs,,,~R>... If  crossover at scalésvhenPi, ormation~ (VAo/1) ~Ec. Thus,
both these assumptions were correct, we would then find thamstead of a DLA-like structure on all scales, a description of
the cluster more likely to be correct is that it remains fractal

a=1/D..~1.4, (200 on scalesr<| but becomes linear on scales>|. If this
description is valid, then
B=DID,,~2.4, (21
di=D~1.7. (22 B=a+(D-1). (23

But we know that this argument is not quite correct be-Retaining our estimate o (which was based on the fact

cause the growing prepinned cluster is not in the same Uninhat pinning can be expected when the hot tips can no longer
versality class as DLA, and probably it is not even a fractalyrow), we find

object. As can be seen in Fig. 4, the first Laurent coefficient
shows that there is a breakdown in scaling after an initial
period when DLA scaling={"~n'® applies.

A better estimate therefore is to start with the question
about when will the influence oE. make itself felt and B=DID,~2.4, (25
cause crossover to a new growth mode? Based on the fact
that essentially all the measure in a harmonic fractiaé
integral over the electric field in the case of dielectric break-
down, or the pressure gradient in the case of two-fluid flow
lies on a one-dimensional interfabg =1, one would expect in good agreement with simulations.

a=D/D,—(D—1)~1.7, (24)

di=pla~1.3, (26)

300 T T

Ec-IO(DLA) * "
E, =0.002 L] ot [ ]
DLA - theoretical "
250 |- .n" J
n n
a - " .
3 or _." | FIG. 4. Time development of the first Laurent
‘g o coefficientF{" for two clusters (i) A DLA clus-
= sl - i ter; (ii) a cluster wherd.=0.002. The solid line
S iy shows the theoretical DLA behavit" ~n(P),
% Note how for the same value af the pinned
100 - . cluster typically has a larger radius due to the hot
tips that grow preferentially.
50 - ~
° 0 1(!'.')0 20‘00 30‘00 40‘00 50‘00 6(;00 7(;00 8(;00 SOIW 10000
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FIG. 5. Data collapse d{"(E.)/n'® plotted
againstE.n*. The asymptotic formf(x)—x is
shown for purposes of comparison. The value
leading to the best data collapseris=0.55.
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V. SCALING IN THE PREPINNING REGIME terns will represent th&=0 limit of a finite temperature

. . . . phase diagram, while DLA will be th& —co limit. To gen-
: Itis possible t.o go further theorgtlca!% and derive a Scal'erate nonzero temperature patterns, we can use a variation of
ing form for the first Laurent coefficiedt;* of the mapping a Monte Carlo algorithm in which the probability for growth
before pinning occurs. This scaling form is based on theat a sites is P(s)=min{1,ex B(Vp|—EJ)]}, whereg=L/T
following observation. It appears that the evolving pattern i%n the conformal mapr;ing approachc t,his translates.to a
asymptotically forming the maximally branched structure,  ovion of Eq.(7), i.e., the probabilit’y of growth at the

subject to the constraint that only sites with a pressure gre., : o . ;
) : andomly chosen poing on the unit circle will be given b
dient |Vp|>E; can grow. Using for the moment the lan- y P g y

guage of electrostatics, the integral of the electric field
around the patterﬁgE(s)ds (which is the total fluxis equal

to the charge on the object and is conserved during growt
The maximally branched obje¢ust before pinning occuys
would thus consist oNg,,win~1/E; hot tips each with a
growth probability Pgowin~Ec. Such an asymptotic flow
pattern would scale asR(\/)\—o)~ECN, and this leads to the
following scaling form for the first Laurent coefficient:

P(6)=min{1exg B(L[®" V] (e')|-Eo)]}. (30

hT'he types of clusters corresponding to this type of growth
can be seen in Fig. 6.

Numerical simulations with fixed criticdt. and increas-
ing temperaturédecreasing3) reveal that the fractal dimen-
sion of the resulting clusters appear to depend continuously
on BE. . That is scaling behavidt{" ~n*P(#&) is observed

n T s for all B andE., as illustrated in Fig. 7.

F(l )(EC)_n \/)‘—Of(ECnM)' @7 We would like to emphasize two points. First, as must be
the case for high temperature, DLA patterns appear and
thereforeD—Dp o When BE.<1. Second, the fractal di-
f(x)—f(0) as x—0, (29) mension reduces continuously, apparently reacBingl for
a finite value ofBE.~ 3.5, thus implying a transition to pure

while the final growth is lineaF{"(E) ~E.n and therefore one-dimensional growth at finite, nonzero temperature. This
last result is tentative as is the suggestion that the fractal

Since the initial behavior is DLA-like and therefore

f(X)—>X as x—o (29 dimension depends only on the prod@E., and further

work with different parameters is required before a clear

it then follows thatu=(D —1)/D~0.416. conclusion can be drawn.

To check this prediction, in Fig. 5 we have plotted

Fg_n)(Ec)/nl/D againStECn“, and as can be seen all the data VIl. SUMMARY AND DISCUSSION

collapse with the scaling functiofi(x) having the form

given by Egs(28) and(29). In this paper, we have shown numerical evidence that a
threshold for growth dramatically influences both the growth

VI. THE INFLUENCE OF NOISE ON DEPINNING pattern and the form of the cluster. Scaling relations for the

pinned patterns have been proposed based on numerical evi-
So far we have assumed that there exists a critical valudence, and the scaling exponents of the pinned cluster have
E. of the electric field or pressure gradient for growth tobeen derived as well as the form of the mass-radius scaling
occur and therefore all patterns are ultimately pinned. In thén the prepinning regime.
presence of thermal noise, as will be the case in most physi- We expect that simple extentions of this model may be
cal situations, depinning can occur and thus the pinned patmportant in other domains of physics. For example, in the
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FIG. 6. Cluster growth in the presence of
noise. All haveE.=0.01. The values of the effec-
£ g e tive inverse temperatur@= 1/T are, respectively,

e (i) B=50; (i) B=150; (iii) B=1000. Note the

600 | oot . 1 transition from a branched DLA structure ds
N —o to a few rivulets or arcs a§—0.
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presence of applied shear viscoelastic behavior is exhibitethmination in the wetting fluid will lead to temperature and
by thin films, an initial elastic behavior being followed, at a surface-tension gradients resulting in additional forttee
well-defined yield stress, by shear melting and ductile flowMarangoni effedgt The alteration in dynamics may be dra-
[14,15. This observed stick-slip behavior is not only due to matic: for example, if surfactant solutions are spread on
the ordered state of the thin film of fluid but also to the moist surfaces large surface-tension gradients will appear
presence of velocity weakening boundary conditions at théeading to a fingering of the contact lifg7], and the spread-
mesoscale. These significantly modify the lubricating prop4ng is an order of magnitude faster than surface tension or
erties of thin films creating localized mesoscopic regions ofgravity dominated wetting. Since such gradients are easily
stick and slip in the sheared filifil6], and how the flow accomodated in the present method, in principle, one could
patterns change due to such stick-slip boundary conditionsbtain in this manner evidence on whether the universality
can be studied using an approach similar to the one presentethss is the same or not.
here. Finally, we have to emphasize the fact that the results
Also, we note that the patterns created by a wanderingresented in this paper raise and leave open a number of
contact line may also lie in a related universality class. Dur-questions about the influence of material properties and noise
ing wetting of a surface by a droplet, any volatility or con- on Laplacian growth patterns and suggest that one is unlikely
to achieve a good understanding of DLA in isolation from a
1.8 L N B LA B A parameter space incorporating these parameters. Some of
these questions would include: Is the fractal dimension truely
| a function of onlyBE_? Is there a phase transition at a finite
~ o value of BE to one-dimensionabut finitely branched clus-
> 1 terg as suggested above? We expect the answers to these
16 [ ) - EN . question to involve a detailed study of the effec&fand 8
i ) \,\ | on the multifractal distribution of the cluster.
- | N ; > | There is another important point that we have not men-
° . ‘\c\) \ tioned in this paper but could have a profound effect on the
i i 1 ! 1 growth pattern. That is whether the cluster is grown serially
1.4 [ L N | \ — (as we have done here or in pure DLér in parallel(as the
N \ | algorithm for Laplacian flows would suggest from its con-
tinuum descrition Very recently iterated conformal mapping
BE, 1 | methods have been used to study this quedi@), and it
1 appears that Laplacian growth and DLA may lie in different
S T I RV T VAP universality classes. This is an important question for future

10° 10 10" 10° 10 study.

BE,
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